Integrating Factors and First Integrals for Liénard Type and Frequency-Damped Oscillators

نویسنده

  • Emrullah Yaşar
چکیده

We consider Liénard type and frequency-damped oscillator equations. Integrating factors and the associated first integrals are derived from the method to compute λ-symmetries and the associated reduction algorithm. The knowledge of a λ-symmetry of the equation permits the determination of an integrating factor or a first integral by means of coupled first-order linear systems of partial differential equations. We will compare our results with those gained by the other methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of a Completely Integrable N-Coupled Liénard Type Nonlinear Oscillator

We present a system of N -coupled Liénard type nonlinear oscillators which is completely integrable and possesses explicit N time-independent and N timedependent integrals. In a special case, it becomes maximally superintegrable and admits (2N−1) time-independent integrals. The results are illustrated for the N = 2, 3 and arbitrary number cases. General explicit periodic (with frequency indepen...

متن کامل

Liouvillian First Integrals for Generalized Liénard Polynomial Differential Systems

We study the Liouvillian first integrals for the generalized Liénard polynomial differential systems of the form x′ = y, y′ = −g(x) − f(x)y, where g(x) and f(x) are arbitrary polynomials such that 2 ≤ deg g ≤ deg f .

متن کامل

0 Quantum Integrals of Motion for Variable Quadratic

We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time-dependent Schrödinger equation with variable quadratic Hamiltonians. An extension of the Lewis–Riesenfeld dynamical invariant is given. The time-evolution of the expectation values of the energy related positive operators is determined for the oscillators under ...

متن کامل

Solution of Nonlinear Hardening and Softening type Oscillators by Adomian’s Decomposition Method

A type of nonlinearity in vibrational engineering systems emerges when the restoring force is a nonlinear function of displacement. The derivative of this function is known as stiffness. If the stiffness increases by increasing the value of displacement from the equilibrium position, then the system is known as hardening type oscillator and if the stiffness decreases by increasing the value of ...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014